Ensemble Methods

Douban
Ensemble Methods

Zum Bewerten, Kommentieren oder Hinzufügen des Artikels zu deiner Sammlung, musst du dich anmelden oder registrieren.

ISBN: 9781439830031
Autor/in: Zhi-Hua Zhou
Verlag: Chapman and Hall/CRC
Veröffentlichungsdatum: 2012 -6
Einband: Hardcover
Preis: USD 87.95
Anzahl der Seiten: 236

/ 10

0 Bewertungen

Nicht genug Bewertungen
Leihen oder Kaufen

Foundations and Algorithms

Zhi-Hua Zhou   

Übersicht

An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.

andere Versionen
Kommentare
Rezensionen
笔记