线性代数及其应用 (第3版·英文版)
Douban
Linear Algebra and Its Applications
David C.Lay
Sinossi
线性代数是处理矩阵和向量空间的数学分支科学,在现代数学的各个领域都有应用。本书主要包括线性方程组、矩阵代数、行列式、向量空间、特征值和特征向量、正交性和最小二乘方、对称矩阵和二次型等内容。本书的目的是使学生掌握线性代数最基本的概念、理论和证明。首先以常见的方式,具体介绍了线性独立、子空间、向量空间和线性变换等概念,然后逐渐展开,最后在抽象地讨论概念时,它们就变得容易理解多了。
contents
CHAPTER 1 Linear Equations in Linear Algebra
INTRODUCTORY EXAMPLE: Linear Models in Economics and Engineering
1.1 Systems of Linear Equations
1.2 Row Reduction and Echelon Forms
1.3 Vector Equations
1.4 The Matrix Equation Ax=b
1.5 Solution Sets of Linear Systems
1.6 Applications of Linear Systems
1.7 Linear Independence
1.8 Introduction to Linear Transformations
1.9 The Matrix of a Linear Transformation
1.10 Linear Models in Business, Science,and Engineering
Supplementary Exercises
CHAPTER 2 Matrix Alqebra
INTRODUCTORY EXAMPLE: Computer Models in Aircraft Design
2.1 Matrix Operations
2.2 The Inverse of a Matrix
2.3 Characterizations of Invertible Matrices
2.4 Partitioned Matrices
2.5 Matrix Factorizations
2.6 The Leontief Input—Output Model
2.7 Applications to Computer Graphics
2.8 Subspaces of Rn
2.9 Dimension and Rank
Supplementary Exercises
CHAPTER 3 Determinants
INTRODUCTORY EXAMPLE: Determinants in Analytic Geometry
3.1 Introduction to Determinants
3.2 Properties of Determinants
3.3 Cramer's Rule, Volume, and Linear Transformations
Supplementary Exercises
CHAPTER 4 Vector Spaces
INTRODUCTORY EXAMPLE: Space Flight and Control Systems
4.1 Vector Spaces and Subspaces
4.2 Null Spaces, Column Spaces, and Linear Transformations
4.3 Linearly Independent Sets; Bases
4.4 Coordinate Systems
4.5 The Dimension of a Veaor Space
4.6 Rank
4.7 Change of Basis
4.8 Applications to Difference Equations
4.9 Applications to Markov Chains
Supplementary Exercises
CHAPTER 5 Eiqenvalues and Eiqenvectors
INTRODUCTORY EXAMPLE: Dynamical Systems and Spotted Owls
5.1 Eigenvectors and Eigenvalues
5.2 The Characteristic Equation
5.3 Diagonalization
5.4 Eigenvectors and Linear Transformations
5.5 Complex Eigenvalues
5.6 Discrete Dynamical Systems
5.7 Applications to Differential Equations
5.8 Iterative Estimates for Eigenvalues
Supplementary Exercises
CHAPTER 6 Orthogonality and Least Squares
INTRODUCTORY EXAMPLE: Readjusting the North American Datum
6.1 Inner Product, Length, and Orthogonality
6.2 Orthogonal Sets
6.3 Orthogonal Projections
6.4 The Gram—Schmidt Process
6.5 Least—Squares Problems
6.6 Applications to Linear Models
6.7 Inner Product Spaces
6.8 Applications oflnner Product Spaces
Supplementary Exercises
CHAPTER 7 Symmetric Matrices and Quadratic Forms
INTRODUCTORY EXAMPLE: Multichannel Image Processing
7.1 Diagonalization of Symmetric Matrices
7.2 Quadratic Forms
7.3 Constrained Optimization
7.4 The Singular Value Decomposition
7.5 Applications to Image Processing and Statistics
Supplementary Exercises
Appendixes
A Uniqueness of the Reduced Echelon Form
B Complex Numbers
Glossary
Answers to Odd—Numbered Exercises
Index
Altre edizioni
-
线性代数及其应用(原书第5版) 机械工业出版社 2018
-
线性代数及其应用(原书第4版) 机械工业出版社 2017
-
Linear Algebra and Its Applications Pearson; 5 edition 2015
-
Linear Algebra and Its Applications Pearson 2011
-
线性代数及其应用 电子工业出版社 2010
-
线性代数及其应用 人民邮电出版社 2007
-
线性代数及其应用 机械工业出版社 2005
-
Linear Algebra and Its Applications (3rd Edition) Addison Wesley 2002