An Introduction to Statistical Learning: with Applications in Python

Goodreads Douban
An Introduction to Statistical Learning: with Applications in Python

Inscrivez ou connectez-vous pour évaluer cette œuvre ou l'ajouter à votre collection.

ISBN: 9783031387463
écrit par: Gareth James / Daniela Witten / Trevor Hastie / Robert Tibshirani / Jonathan Taylor
édition: Springer
date de publication: 2023 -7
série: Springer Texts in Statistics
langue: English
reliure: Hardcover
prix: USD 109.99
nombre de pages: 75

/ 10

0 évaluations

Pas assez d'évaluations
Acheter ou emprunter

with Applications in Python

Gareth James / Daniela Witten   

résumé

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

autres éditions
commentaires
avis
笔记