High-Dimensional Statistics

豆瓣 谷歌圖書
High-Dimensional Statistics

登入後可管理標記收藏

ISBN: 9781108498029
作者: Martin J. Wainwright
出版社: Cambridge University Press
發行時間: 2019 -1
叢書: Cambridge Series in Statistical and Probabilistic Mathematics
語言: 英語
裝訂: Hardcover
價格: GBP 55.99
頁數: 640

/ 10

2 個評分

評分人數不足
借閱或購買

A Non-Asymptotic Viewpoint

Martin J. Wainwright   

簡介

Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data.

其它版本
短評
評論
笔记